
Quantum Field Theory
Solutions of Training Exercises

Exercise 1

Part 1

• Each term of the Lagrangian has energy dimension 4. Scalar fields have one dimension of energy (which can
be checked by looking at their kinetic term, where the derivatives have dimension 1). Then, looking at the
interaction terms containing 3 scalar fields, we deduce the couplings have energy dimension 1.

• We have the follwing Feynman rules:

Φ

φ1

φ1

= −iλ1 Φ

φ2

φ2

= −iλ2 (1)

p
=

i

p2 + iε

p
=

i

p2 −M2 + iε
(2)

Notice that there are no factors 1
2 in the vertices, because we have already taken into account the two ways

to connect the φi fields.
Let’s compute in detail the φ1φ1 → φ1φ1 amplitude. There are three diagrams, which correspond to the
usual s,t,u-channel:

iM(φ1φ1 → φ1φ1) =

φ1

φ1

φ1

φ1

p1
p1 + p2

Φ
p3

p2 p4

+

φ1 φ1

φ1 φ1

p1 p3

p2

p4

p1 − p3 +

φ1 φ1

φ1 φ1

p1

p4

p2

p3

p1 − p4 . (3)

We simply get

iM(φ1φ1 → φ1φ1) = (−iλ1)2
i

(p1 + p2)2 −M2
+ (−iλ1)2

i

(p1 − p3)2 −M2
+ (−iλ1)2

i

(p1 − p4)2 −M2
, (4)

M(φ1φ1 → φ1φ1) = −λ21
(

1

s−M2
+

1

t−M2
+

1

u−M2

)
. (5)

We get something similar for the φ2φ2 → φ2φ2 process, only the coupling at the vertices changes

M(φ2φ2 → φ2φ2) = −λ22
(

1

s−M2
+

1

t−M2
+

1

u−M2

)
. (6)



The φ1φ2 → φ1φ2 is a bit different. Because there is no φ1φ2Φ interaction, here we have only one diagram:

iM(φ1φ2 → φ1φ2) =

φ1 φ1

φ2 φ2

p1 p3

p2

p4

p1 − p3 . (7)

So
M(φ1φ2 → φ1φ2) =

−λ1λ2
t−M2

. (8)

• Clearly the two first amplitudes are equal if and only if λ1 = λ2. In this case, the interaction term in the
lagrangian is

Lint = −λ1Φ(φ21 + φ22) = −λ1Φφ2 , (9)

where we have defined a 2-components field φ =

(
φ1
φ2

)
. We see that we have more symmetry to this

lagrangian, it is now invariant under O(2) transformations of φ (leaving Φ invariant). This symmetry is the
reason why these processes do not distinguish between φ1 and φ2. Then, observing the third process, which
has a quite different amplitude, could be a way to prove there exist indeed two fields and not just one.

Part 2

• All diagrams are simple interactions. For example

iM(Φ1 → φ†2φ1) = Φ1

φ†2

φ1

= −iλ1 (10)

Thus

dΓ(Φ1 → φ†2φ1) =
1

2M

 ∏
i=1,2

d3p

(2π)3
1

2Ei

 |M(Φ1 → φ†2φ1)|2(2π)4δ(4)(PA − p1 − p2) . (11)

Then, using the formula for 2-body phase space proven in class

Γ(Φ1 → φ†2φ1) =

∫
dΓ(Φ1 → φ†2φ1) =

1

2M
λ21

∫
dΩCM

4π

1

8π

2|~p|
ECM

=
λ21

16πM
. (12)

The total energy is simply ECM =M , and the magnitude of the 3-momentum of final particles is |~p| =M/2
since by conservation of 4-momentum (|~p|, ~p) + (|~p|,−~p) = (M,~0).
Proceding very similarly, we find

Γ(Φ1 → φ2φ
†
1) =

λ21
16πM

(13)

so the total width is
Γ(Φ1) =

λ21
8πM

. (14)

Φ2 has the same decay channels, and we find the total rate

Γ(Φ2) =
λ22

8πM
. (15)
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Φ3 decays to φ1φ†1 or φ2φ†2. There is no difference in the computation and we have

Γ(Φ3) =
λ23

8πM
. (16)

• Clearly, if λ1 = λ2 = λ3, the decay widths are the same.

• In this case, we can rewrite the interaction as

Lint = −λ1
(
Φ1(φ

†
2φ1 + φ†1φ2) + Φ2(iφ

†
2φ1 − iφ†1φ2) + Φ3(φ

†
1φ1 − φ†2φ2)

)
= −λ1

3∑
A=1

ΦAφ
†σAφ , (17)

where we have introduced the 2-component field φ =

(
φ1
φ2

)
and the Pauli matrices. Written in this way, the

interaction term is now manifestly SU(2)-invariant if we define φ as transforming as a doublet, and Φ as a
triplet. Indeed, if we consider a SU(2) transformation defined by ~θ = (θ1, θ2, θ3), it acts as

φ→ exp(iθiσi/2)φ = URφ ,

ΦA → exp(iθiJi)ABΦ = RABΦB ,
(18)

and using
U†
Rσ

AUR = RABσ
B (19)

We find that the lagrangian is invariant. As in the first part, the equality of decay rates is a consequence of
an enhanced global symmetry.

• Yes, since the symmetry is exact, it will still guarantee that the ΦA have the same decay rates if one computes
them at any higher order in perturbation theory.

Exercise 2

• As before, scalars have dimension 1, and fermions have dimension 3
2 , as can be seen from their kinetic term.

In the interaction term, the two scalars, two fermions and one derivative have total dimension 6, so the
coupling has energy dimension -2.

• The Feynman rule for the vertex is the following:

φ1

φ2

ψ

ψ̄

p = −ig(−ip)µγµ = −g 6 p , (20)

where the i is added as usual to the −g factor in the lagrangian, the γµ comes from the lagrangian, and
the (−ip)µ comes from the derivative in the lagrangian. Since the derivative is on the φ2 field, only the
momentum coming in through the φ2 leg appears in the rule. It will change sign if the momentum on the
φ2 line is outgoing instead of incoming.
Let us compute scattering amplitudes

iM(φ1(p1)ψ(p2, r) → φ2(p3)ψ(p4, s)) =

φ1

ψ, r

φ2

ψ, s

p1

p2

p3

p4 = ūs(p4)g 6 p3ur(p2) , (21)
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where, as usual we asociate ūs to an outgoing fermion of polarization s, ur to an incoming fermion, and we
reversed the sign of the vertex since p3 is going out, as mentioned.

iM(φ1(p1)φ2(p2) → ψ̄(p3, r)ψ(p4, s)) =

φ1

φ2

ψ̄, r

ψ, s

p1

p2

p3

p4 = −ūs(p4)g 6 p2vr(p3) , (22)

where this time we have used vr for the outgoing antifermion.

iM(ψ̄(p1, r)ψ(p2, s) → φ1(p3)φ2(p4)) =

ψ̄, r

ψ, s

φ1

φ2

p1

p2

p3

p4 = v̄r(p1)g 6 p4us(p2) . (23)

• The next step towards the unpolarized cross-section is to square the amplitude, average over initial polar-
izations and sum over final polarizations.

1

2

∑
r,s

|M(φ1ψ → φ2ψ)|2 =
1

2

∑
r,s

ūs(p4)g 6 p3ur(p2)
(
ūs(p4)g 6 p3ur(p2)

)∗
=
g2

2

∑
r,s

ūs(p4)g 6 p3ur(p2)ūr(p2) 6 p3us(p4) =
g2

2
tr
[
( 6 p4 +m) 6 p3( 6 p2 +m) 6 p3

]
=
g2

2

(
tr[ 6 p4 6 p3 6 p2 6 p3] +m2 tr[ 6 p3 6 p3]

)
= 4g2(p4 · p3)(p2 · p3) .

(24)

In the second equality, we have used the usual techniques to take the conjugate and the amplitude. In the
third, the identities for the sum over polarizations. Then we have developped the traces and used the trace
identities, as well as p3 · p3 = 0.
Let us now look at the kinematics in the center of mass frame:

pµ1 = (p, 0, 0, p), pµ2 = (Ep, 0, 0,−p),
pµ3 = (p′, ~p ′), pµ4 = (Ep′ ,−~p ′),

(25)

where p′ = |~p ′| and Ep =
√
p2 +m2. By conservation of energy, we find p = p′. We can compute

p3 · p4 =
1

2

(
(p3 + p4)

2 − p23 − p24
)
=

1

2

(
(p+ Ep)

2 −m2
)
= p(p+ Ep),

p2 · p3 = pEp + ~p · ~p ′ = pEp + p2 cos θ ,
(26)

where θ is the angle between the final momentum ~p ′ and the z direction.
Then, we use the formula for cross-section

dσ =
1

2E12E2|v1 − v2|

 ∏
f=3,4

d3pf
(2π)3

1

2Ef

 1

2

∑
r,s

|M|2(2π)4δ(4)
(
p1 + p2 − p3 − p4

)
. (27)

We can use the usual reduction of the 2-body phase space

∫  ∏
f=3,4

d3pf
(2π)3

1

2Ef

 (2π)4δ(4)
(
p1 + p2 − p3 − p4

)
=

∫
dΩ

4π

1

8π

(
2|~p ′|

E3 + E4

)
=

∫
dΩ

4π

1

8π

(
2p

p+ Ep

)
. (28)

We also rewrite the form factor as

E1E2|v1 − v2| = |E2~p1 − E1~p2| = p(p+ Ep) . (29)
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We obtain the following expression, and the integral over the final particles angles is straightforward:

σ(φ1ψ → φ2ψ) =
1

4p(p+ Ep)

1

8π

2p

p+ Ep
4g2p(p+ Ep)

∫
dΩ

4π
(pEp + p2 cos θ)

=
g2p2Ep

4π(p+ Ep)
.

(30)

• If we now consider there is only one scalar field φ1 = φ2, in the feynman rules, one has to consider two
possible ways to connect that field:

φ1

φ1

ψ

ψ̄

p1

p2 =
−ig
2

[
(−ip1)µ + (−ip2)µ

]
γµ = −g

2
( 6 p1 + 6 p2) . (31)

With this modification, one can see that all previous amplitudes vanish, using the equation of motion of the
ψ field. For example:

iM(φ1(p1)ψ(p2, r) → φ1(p3)ψ(p4, s)) =

φ1

ψ, r

φ1

ψ, s

p1

p2

p3

p4 = ūs(p4)g(− 6 p1 + 6 p3)ur(p2) ,

= gūs(p4)( 6 p2 − 6 p4)ur(p2) = gūs(p4)
(
( 6 p2 −m)− ( 6 p4 −m)

)
ur(p2)

= 0 ,

(32)

where in the last equality we have used ( 6 p − m)ur(p) = 0 = ūs(p)( 6 p − m). If we had not noticed the
vanishing amplitude, we would anyway get 0 when doing the sum over polarizations of squared amplitudes.
Why is that 0 ? By using the product rule and integration by parts, we can get

Lint = −g
2
∂µ(φ1φ1)ψ̄γ

µψ =
g

2
φ1φ1∂µ(ψ̄γ

µψ) + tot. der. (33)

We get an interaction term proportionnal to the divergence of the Noether current ψ̄γµψ associated to the
U(1) symmetry of the spinor field. Since this current is conserved at leading order, this divergence vanishes
up to terms O(g). Thus, the interaction is in g2 at leading order and amplitudes would need to be computed
at higher order in perturbation theory.

Exercise 3: Scalar QED Compton scattering

The Lagrangian from this theory is fixed by Lorentz invariance, hermiticity and gauge invariance and can be
written as

L = −1

4
FµνF

µν + (Dµφ)
†Dµφ−m2|φ|2 − λ

4
(|φ|)2 (34)

where the covariant derivative is
Dµ = ∂µ + ieAµ. (35)

This Lagrangian has three free parameters with the following energy dimension:

[m] = 1

[e] = [λ] = 0
(36)
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We will now compute the Feynman rules for this theory. First of all we have the free field propagators for the
scalar field

=
i

p2 −m2 + iε
(37)

and the photon field (in the Feynman gauge)

µ ν =
−iηµν
p2 + iε

. (38)

To find the Feynman rules for the interaction vertices we can compute some simple amplitudes. We will do it
explicitly for one of the vertices. Expanding the kinetic term of the scalar field, we find an interaction between
two scalars and the photon given by

Lint = −ieAµ(φ†∂µφ− φ∂µφ
†). (39)

To find the Feynman rule for this interaction, we can compute the transition amplitude between a state with a
scalar and an anti-scalar and a photon. This amplitude actually doesn’t contribute to the S matrix because in this
process for on-shell particles it is impossible to conserve both energy and momentum. Anyway, this only means
that the δ(4) in front ot the amplitude will give zero when integrated on any initial and final wave-packets, but we
can still compute the amplitude for the process.

The initial and final free states are given by

|i〉 = |φφ†〉 = a†p1
b†p2

|0〉 , (40)

|f〉 = |γ〉 = c†,1k |0〉 . (41)

where the creation operators are defined as

φ =

∫
dΩp(ape

−ipx + b†pe
ipx) (42)

Aµ =

2∑
i=1

∫
dΩp(ε

i
µ(p)c

i
pe

−ipx + ε∗,iµ (p)c†,ip eipx). (43)

The S matrix can be expanded up to the first order in perturbation theory as schematically 1

S = Tei
∫
d4xLint ∼ 1 + i

∫
d4xLint = 1 + (2π)4δ(4)(

∑
p)iM. (44)

So the amplitude is given by

(2π)4δ(4)(
∑
p)iM = 〈0| c1k

[
i

∫
d4x

(
−ieAµ(φ†∂µφ− φ∂µφ

†)
)]
a†p1

b†p2
|0〉 . (45)

To compute the amplitude we substitute the fields as in equation (42) to find

e

2∑
i=1

∫
d4x dΩq1dΩq2Ωq3ε

∗,i
µ (q3)i(q

µ
2 − qµ1 ) 〈0| (c1kc†,iq3 )(bq2b

†
p2
)(aq1a

†
p1
) |0〉 eix(q3−q1−q2). (46)

This expression can be further simplified by using the commutation relations for the creation/annihilation operators

aka
†
q |0〉 = [ak, a

†
q] |0〉 = (2π)3

√
2Ekδ

(3)(k− q) |0〉 . (47)
1Important note: this derivation gives the correct result but is conceptually wrong. The reason is that we have interaction terms

that contain derivatives and these are not easy to work with in the canonical quantization formalism. A correct derivation of these
rules should be done using the path integral formalism.
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This allows us to perform the integrals on the three momenta q1, q2 and q3. Finally the integration on x gives us
the energy/momentum conservation delta function. In the end we have

(2π)4δ(4)(k − p1 − p2)iM = e(2π)4δ(4)(k − p1 − p2)ε
∗,1
µ (k) [i(pµ2 − pµ1 )] . (48)

Factoring out the delta factor and the external polarization, we can read the Feynman rule for the vertex

p1

p2

µ = ie(pµ2 − pµ1 ), (49)

where in the Feynman rule the momentum are directed toward the vertex. When we use this rule we must be
careful with the direction of the momentum with respect to the vertex and change sign if the momentum is
outgoing.

The two other rules are found in a similar way: for the interaction between two scalars and two photons

µ

ν

= 2ie2ηµν , (50)

where the factor 2 comes from the two possible way of contracting the photon field with the external particles,
and for the interaction between four scalars

= −iλ, (51)

where the factor 1/4 cancels a factor 4 coming from the 2×2 possible way of contracting the field with the external
legs.

We can now start the computation for the Compton scattering. We have three diagrams that contribute to this
process

k

p

p+ k

p′

k′

+

k

p

p− k

k′

p′

+

k

p

p′

k′

(52)

By using the Feynman rules written above we find the following amplitude

iM = ie2εiµ(k)ε
′∗,j
ν (k′)

[
− (2p+ k)µ(2p′ + k′)ν

2p · k
+

(2p′ − k)µ(2p− k′)ν

2p · k′
+ 2ηµν

]
. (53)

To verify that the Ward identity is satisfied, we need to show that the expression in the square brackets gives zero
when contracted with the momenta of the polarization vectors. For example contracting with kµ gives

kµMµν ∝kµ
[
− (2p+ k)µ(2p′ + k′)ν

2p · k
+

(2p′ − k)µ(2p− k′)ν

2p · k′
+ 2ηµν

]
=2[p+ k − p′ − k′] = 0,

(54)
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where we have used p · k′ = p′ · k. Contracting with k′ν is a similar calculation and gives zero as well.

In the laboratory frame we have the following momenta:

p = (m, 0, 0, 0), (55)
k = E(1, 0, 0, 1), (56)
k′ = E′(1, sin θ, 0, cos θ), (57)
p′ = (m+ E − E′,−E′ sin θ, 0, E − E′ cos θ), (58)

where E′ is given by the usual Compton formula

1

E′ −
1

E
=

1

m
(1− cos θ). (59)

To compute the differential cross section we need to compute the unpolarized squared modulus of the amplitude.
There are two ways of doing this: the first one is to proceed as in the exercise of Compton scattering of a
fermion, that is we use the trick of replacing the spin sum of photon polarization with −ηµν . This leads to
some straightforward but lengthy algebra. A faster way to proceed is to compute explicitly M for the different
polarization possibilities.

For the initial photon we chose the following base for the polarization vectors (transverse to the direction of motion
to the photon)

ε1µ(k) = (0, 1, 0, 0), (60)
ε2µ(k) = (0, 0, 1, 0). (61)

For the final photon we rotate these two polarization vectors to be transverse to the direction of motion of the
final photon

ε′1µ (k
′) = (0,− cos θ, 0, sin θ), (62)

ε′2µ (k
′) = (0, 0, 1, 0). (63)

The advantage of this choice is that most of the scalar products are zero. In fact we have:

p · ε = k · ε = p · ε′ = k′ · ε′ = 0, (64)

meaning that the only non-zero contribution to the amplitude comes from the third diagram

iM = 2ie2(εi · ε′,j) (65)

and we immediately find
1

2

2∑
i,j=1

|M|2 = 2e4(1 + cos2 θ). (66)

To compute the cross section we need the flux factor

F = p · k = mE (67)

and the phase-space measure

dΦ2 =
1

16π2

(E′)2

mE
dΩ. (68)

The differential cross section is then given by

dσ

dΩ
=

α2

2m2

1 + cos2 θ

(1 + E/m(1− cos θ))2
(69)

that in the low energy limit E � m reduces to the usual Thomson formula

dσ

dΩ
=

α2

2m2
(1 + cos2 θ) (70)

that can be easily integrated to find the Thomson cross-section

σ =
8πα2

3m2
. (71)
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Exercise 4

For convenience we start by writing the interaction part of the Lagrangian as

Lint = λψ̄PRΨφ+ λΨ̄PLψφ (72)

where Ψ is a Dirac field of mass M while ψ is a massless Dirac field and φ is a massless real scalar.

Each fermion has energy dimension 3/2 and the scalar has dimension 1. Thus, ψ̄LΨRφ has dimension 4, meaning
that λ must be dimensionless.

Now consider the process Ψ → ψ, φ where Ψ has momentum p and polarization r, ψ has momentum k and
polarization s while φ has momentum q. It is straight-forward to derive the Feynman rule

iM =
p

k

q

Ψ

ψ

φ

= iλūs(k)PRur(p) (73)

Now to compute M∗ we need

(ūs(k)PRur(p))
∗ = ur(p)

†P †
Rγ

†
0us(k) = ūr(p)PLus(k) (74)

where we used γ†0 = γ0 and PRγ0 = γ0PL. Thus, the matrix element squared averaged over the initial polarizations
and summed over the final polarizations reads

1

2

∑
r,s

|M|2 =
1

2

∑
r,s

λ2ūr(p)PLus(k)ūs(k)PRur(p) (75)

Now using
∑

s us(k)ūs(k) = 6 k and
∑

r ur(p)ūr(p) = 6 p +M (recall that Ψ has mass M while ψ is massless) we
obtain

1

2

∑
r,s

|M|2 =
λ2

2
Tr(( 6 p+M)PL 6 kPR) =

λ2

2
Tr(( 6 p+M) 6 kPR) (76)

Now note that only 6 p 6 k 1
2

1 contributes to the trace. Thus,

1

2

∑
r,s

|M|2 = λ2p · k =
λ2M2

2
(77)

where in the last equality we used 0 = q2 = (p − k)2 = M2 − 2p · k by momentum conservation which implies
p · k =M2/2. To compute the decay rate we use the general formula for a decay A→ CD

dΓA→CD =
1

2M
|M|2 dϕd cos θ

16π2

pc(M)

M
(78)

where pC(M) is the norm of the 3-momentum of particle C. Here by momentum conservation and the fact that
the final particles are massless, |~pC | = |~k| = M/2. Moreover, since we are averaging over initial polarizations
and summing over all final polarizations we should replace |M|2 → 1

2

∑
r,s |M|2. Finally, our matrix elements is

rotationally invariant so the integral over the solid angle results in a factor 4π. Altogether we obtain

Γ =
λ2M

32π
(79)

Note that the dependence in λ and M could have been guessed by a quick analysis. First, we know that the
interaction vertex goes as λ. Thus, Γ ∝ |M|2 ∝ λ2. Moreover, we know that Γ should have energy dimension 1.
The only dimensionfull scale at hand is the mass M of the Ψ particle. Thus the only possibility at leading order
in λ is Γ ∼ λ2M as we derived.

9


